Гены человека – что нужно знать про геном? - Oxford44.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Гены человека – что нужно знать про геном?

Какие генетические черты дети берут от мамы, а какие — от папы

Природа распорядилась так, что ребенок наследует гены и матери, и отца, но определенные доминирующие качества он перенимает только от своего папы — как хорошие, так и не слишком. Какие же именно интеллектуальные и внешние данные наследуют от родителей дочери и сыновья?

Все мы в свое время на уроках биологии в школе познакомились с генетикой. И помним кое-что из основ этой интересной и нужной науки. Сегодня поговорим о тайнах наследственности. Можно ли сделать более или менее достоверный прогноз, какими будут интеллект и внешность вашего малыша? Какие качества он унаследует от именно матери, а какие – от отца? Оказывается, многое зависит конкретно от пола будущего ребенка.

Если отец — гений, его сын таким не будет

Безусловно, природой устроено так, что ребенок наследует гены и матери, и отца, но определенные доминирующие качества он перенимает только от своего папы — как хорошие, так и не слишком.

Генетические особенности и качества, наследуемые детьми именно от отцов:

1. Проблемы с сердцем.

Специалисты Университета Лестера в своих исследованиях пришли к следующему выводу. Мужчины, имеющие определенную хромосому, практически на 50% чаще страдают болезнями, связанными с коронарной артерией (суть недуга — в ослаблении доставки кислорода к сердцу). Данная проблема может передаваться по наследству сыновьям.

2. Расстройства психики.

Среди психических заболеваний, передающихся от мужчин к их детям – шизофрения и синдром дефицита внимания и гиперактивности (СДВГ). Чем старше отец, тем выше риск, потому что с годами ДНК мужчин поддается мутации. Женщины же появляются на свет с определенным набором яйцеклеток, и их ДНК неизменна в течение жизни.

3. Неровные зубы.

Гены мужчины, отвечающие за зубы и конфигурацию челюсти, активнее, чем женские. От папы ребенок может «получить» не только неровные зубы, но и тонкую зубную эмаль.

4. Проблема, связанная с деторождением.

Ученые утверждают, что невысокое качество спермы, возможно, генетическая проблема. Если ребенок появился на свет в результате процедуры ЭКО, то он, вероятно, также будет бесплодным.

5. Пол будущего ребенка.

Спрогнозировать пол будущего ребенка возможно, изучив генеалогическое древо папы. Если сперма имеет Х-хромосому, то в соединении с Х-хромосомой мамы – на свет появится ребенок женского пола (девочка). Если в сперме заложена Y-хромосома – родится ребенок мужского пола (мальчик). Ученые высказывают предположение, что пока не обнаруженный наукой ген отвечает за процесс распределения хромосом X и Y по сперме родителя.

6. Цвет глаз будущего ребенка.

Так как гены мужчины доминируют над генами женщины, чаще всего скульптура лица и оттенок глаз ребенка будут как у его папы.

7. Рост будущего ребенка.

Рост ребенка зависит от генов отца. У высоких отцов обычно рождаются такие же высокие дети.

Как быть с уровнем интеллекта? Давайте разберемся в этом вопросе.

1. Уровень интеллекта от отца к его ребенку мужского пола (сыну), к сожалению, не передается. Говоря проще, если отец – гениальный человек, то его сын гарантированно не унаследует его замечательных генов.

2. Идиотизм от отца к его ребенку мужского пола (сыну) не передается (к счастью). Если отец не блещет, как говорится, умом, то его сын будет другим по уровню умственного развития. И это хорошо.

3. Уровень интеллекта от отца генетически может наследоваться лишь ребенком женского пола (дочерью). Но только наполовину.

4. Наследовать уровень интеллекта ребенок мужского пола может лишь от матери, который она наследовала от собственного отца.

5. Ребенок женского пола (дочь) гения будет ровно на 50% так умна, как ее собственный отец, но ее сын будет гением. Если же отец глуповат, то дочь будет в два раза менее глупая, чем ее папа.

6. Вот поэтому женщин-гениев настолько же мало, как и полных идиоток. Но зато гениальных мужчин и тупых мужчин достаточно много.

Итог для мужчин:

1. Чтобы предположить интеллектуальные способности вашего ребенка мужского пола (сына), присмотритесь к отцу собственной жены (если он профессор, то ваш сын также поразит вас замечательными умственными возможностями).

2. Ваш ребенок женского пола (дочь) может унаследовать лишь 50% вашего ума. Но и ровно столько же глупости, присущей вам, она тоже возьмет себе. По уровню интеллекта дочь будет похожа на вас. А вот ее ребенок мужского пола, то есть сын унаследует все ваши интеллектуальные возможности. Если хотите иметь умных наследников — молитесь о внуке от своей любимой дочери.

3. Ваши интеллектуальные возможности наследованы от матери, а точнее — от деда (ее отца).

Итог для женщин:

1. Ваш ребенок мужского пола (сын) по уровню интеллекта необычайно похож на вашего отца, и корить его такими словами: «ты такой же глупец, как твой папочка» — не совсем правильно. Следует говорить: «ты настолько же туп, как и твой дедушка».

2. Ваш ребенок женского пола (дочка) будет иметь интеллект как у ее отца. Её же дети мужского пола (сыновья) выйдут точными копиями вашего супруга.

Как видите, вполне возможно предугадать интеллектуальные способности и внешние данные вашего будущего ребенка. Знание основ генетики в этом поможет. Главное – какого именно пола будет ребенок.опубликовано econet.ru.

P.S. И помните, всего лишь изменяя свое сознание — мы вместе изменяем мир! © econet

Понравилась статья? Напишите свое мнение в комментариях.
Подпишитесь на наш ФБ:

Что такое гены и геном человека

С развитием естественных наук, которое произошло в начале 20 века, удалось выявить принципы наследственности. В этот же период возникли новые термины, описывающие, что такое гены и геном человека. Геном называют единицу наследственной информации, отвечающую за формирование в организме носителя какого-либо свойства. В живой природе именно передача этой информации является основой всего процесса размножения. Этот термин, как и само определение, что такое гены, впервые был использован ботаником Вильгельмом Йогансеном в 1909 году.

Структура гена

На сегодняшний день установлено, что гены – это отдельные участки ДНК – дезоксирибонуклеиновой кислоты. Каждый ген отвечает за передачу в организме человека данных о строении РНК (рибонуклеиновой кислоты) или белка. Как правило, в составе гена присутствует несколько участков ДНК. Структуры, которые берут на себя передачу наследственной информации, называют кодирующими последовательностями. Но при этом в ДНК есть и такие структуры, которые влияют на проявление гена. Данные участки называются регуляторными. То есть гены включают кодирующие и регуляторные последовательности, которые в ДНК расположены отдельно друг от друга.

Геном человека

В 1920 году Ганс Винклер ввел такое понятие, как геном. Сначала этот термин использовался для обозначения набора генов непарного одинарного набора хромосом, который присущ биологическому виду. Было такое мнение, что геном целиком восполняет все свойства организма определенного вида. Но в дальнейшем значение этого термина немного изменилось, так как проведенные исследования показали, что такое определение не совсем соответствует истине.

Генетическая информация

Было установлено, что такое гены и то, что в ДНК многих организмов присутствуют не кодирующие ничего последовательности. К тому же часть генетической информации содержится в ДНК, которые расположены вне ядра клетки. Часть генов, отвечающих за кодирование одного и того же признака, может существенно различаться по своей структуре. То есть геномом называют собирательный набор генов, которые содержатся в хромосомах и за их пределами. Он характеризует свойства определенной популяции особей, но при этом генетический набор каждого отдельного организма имеет существенные отличия от его генома.

Что является основой наследственности

В попытках определить, что такое гены, было проведено множество самых различных исследований. Поэтому нельзя однозначно ответить на этот вопрос. Если верить биологическому определению этого термина, то ген – это последовательность ДНК, содержащая информацию об определенном белке. И до недавних пор такого объяснения этого термина было вполне достаточно. Но сейчас установлено, что последовательность, в которой закодирован белок, не всегда является непрерывной. Она может прерываться вкрапленными в нее участками, не несущими никакой информации.

Идентификация гена

Можно идентифицировать ген по группе мутаций, каждая из которых предупреждает создание соответствующего белка. Тем не менее данное утверждение может считаться правильным и касаемо прерывистых генов. Свойства их кластеров в данном случае оказываются гораздо сложнее. Но это утверждение довольно спорное, так как многие гены с прерывистой цепочкой обнаружены в таких ситуациях, когда невозможно провести тщательный генетический анализ. Считалось, что геном довольно постоянен, и какие-либо изменения в его общей структуре происходят лишь в крайних случаях. А конкретно лишь в растянутой эволюционно-временной шкале. Но такое суждение противоречит недавно полученным данным, доказывающим, что в ДНК периодически происходят определенные перестройки, и что есть относительно изменчивые компоненты генома.

Читайте также:  Иван тургенев – краткая биография и факты

Свойства генов, выявленные в работе Менделя

В работе Менделя, а именно в его первом и втором законах, точно сформулировано, что такое гены и каковы их свойства. В первом законе рассматриваются особенности индивидуального гена. В организме присутствуют две копии каждого гена, то есть если говорить языком современности, он диплоиден. Одна из двух копий гена попадает к потомку от родителя через гаметы, то есть передается по наследству. Гаметы, объединяясь, образуют оплодотворенное яйцо (зиготу), которая несет по одной копии от каждого родителя. Следовательно, организм получает одну материнскую копию гена и одну отцовскую.

Двуликий ген старения

Как известно, старение человека объясняется не только накоплением неполадок в организме, но и работой определенных генов, несущих информацию о старении. Сразу возникает вопрос о том, почему в процессе эволюции этот ген сохранился. Зачем он нужен в организме и какую роль играет? Исследования на эту тему были основаны на выведении вида мышей без характерного белка p66Shc. Особи, у которых отсутствовал данный белок, не были склонны к накоплению жировой прослойки, медленнее старели, меньше страдали сдвигами метаболизма, сердечно-сосудистыми заболеваниями и диабетом. Выходит, этот белок является геном, ускоряющим процессы старения. Но такие результаты дали только лабораторные исследования. Потом животные были перенесены в естественные условия обитания, и в результате популяция мутантных особей стала снижаться. По этой причине было принято решение о дальнейшем исследовании, и как итог был подтвержден факт, что «ген старения» имеет большое значение в процессах адаптации организма и отвечает за естественный энергетический обмен в организме животных.

Ричард Докинз – биолог-эволюционист и его «Эгоистичный ген»

Книга, которую написал Ричард Докинз («Эгоистичный ген»), является наиболее популярной книгой по эволюции. В книге задается не совсем типичный угол обзора, показывается, что эволюция, а точнее естественный отбор, происходит в первую очередь на уровне генов. Конечно, сегодня этот факт уже не вызывает сомнения, но в 1976 году такое заявление было весьма новаторским. Мы созданы нашими генами. Все живые существа необходимы для того, чтобы сохранить гены. Мир эгоистичного гена – это мир безжалостной эксплуатации, жесткой конкуренции и обмана.

Изучение генома человека

В клетках человека обнаружено неожиданно большое разнообразие транскриптов — молекул РНК, синтезированных на матрице геномной ДНК. Выяснилось, что первичному прочтению (транскрипции) подвергается 80% генома, несмотря на то, что кодирует белки лишь 2% генома. Этот и другие результаты говорят о том, что механизмы функционирования генома сложнее, чем принято считать, и сам «язык», на котором записана наследственная информация, нам еще не до конца понятен.

Хотя геном человека был объявлен «прочтенным вчерне» еще в 2000-2001 гг., а в 2003-2004 гг. заговорили о «почти совсем полном прочтении», наука по-прежнему далека от полного понимания закодированной в геноме информации. Для решения этой глобальной задачи в 2003 году Национальным институтом по изучению генома человека (National Human Genome Research Institute, NHGRI) был запущен проект ENCODE (Encyclopedia of DNA Elements), объединивший сотни ученых и десятки научных коллективов из США и других стран.

Задача-максимум, стоящая перед участниками проекта, состоит в том, чтобы выяснить, зачем нужен и что кодирует каждый из 3 млрд нуклеотидов человеческого генома. Причем выяснить не только теоретически, in silico (путем компьютерного анализа последовательностей ДНК), но и подтвердить результаты экспериментально. До решения этой задачи, разумеется, еще очень далеко. Пока же ученые отрапортовали о завершении первого этапа работы, целью которого была в основном отработка методик и проба сил.

Ученые использовали весь обширный арсенал средств и методов современной генетики, геномики и молекулярной биологии. В частности, широко использовалось сравнение человеческого генома с геномами других млекопитающих (см.: Геном макака резуса расскажет об эволюции человека, «Элементы», 19.04.2007; Прочтение генома опоссума доказало ключевую роль транспозонов в эволюции млекопитающих, «Элементы», 13.05.2007). Такое сравнение позволяет выявить «консервативные», то есть схожие у разных видов участки генома. Консерватизм обычно свидетельствует о функциональной важности данного участка (см.: Сравнение геномов человека и мыши помогло обнаружить новый способ регуляции работы генов, «Элементы», 21.04.2007).

Но главным «коньком» проекта ENCODE является тотальный анализ транскриптома, то есть тех молекул РНК, которые синтезируются клеткой на матрице геномной ДНК в ходе транскрипции — «прочтения» генетической информации. Напомним, что информация, закодированная в классических белок-кодирующих генах, реализуется в два этапа: сначала на матрице ДНК синтезируется РНК (транскрипция), затем на матрице РНК синтезируется белок (трансляция).

Ранее уже было известно, что только 2% генома человека кодируют белки. Лишь эти два процента генетического «текста» подвергаются не только транскрипции, но и трансляции. Было известно и то, что транскрипции подвергаются также и многие нетранслируемые участки генома. Это, во-первых, гены функциональных РНК (транспортных, рибосомных и разнообразных регуляторных), во-вторых — интроны, некодирующие «вставки», имеющиеся в большинстве белок-кодирующих генов. Перед трансляцией интроны вырезаются из молекул РНК (это называется сплайсингом). Одно из главных достижений проекта ENCODE состоит в том, что наконец удалось выяснить, какая доля геномной ДНК подвергается транскрипции в человеческих клетках. Оказалось — целых 80%, гораздо больше, чем предполагалось. До начала выполнения проекта было известно, что в той сотой части генома, которую предстояло изучить, есть 8 генов нетранслируемых РНК. Оказалось, что в действительности их тысячи.

Исследователи пока не могут точно сказать, какую функцию выполняют все эти транскрипты. Не исключено, что некоторые из них не выполняют никакой специальной функции и являются всего лишь побочным продуктом деятельности ферментов РНК-полимераз — деятельности, которая, вероятно, является отчасти хаотической (о хаотических аспектах работы некоторых белков см.: Работу регуляторного белка впервые пронаблюдали под микроскопом, «Элементы», 31.05.2007; Разгадан механизм движения «шагающего белка», «Элементы», 29.05.2007). Но многие из обнаруженных транскриптов все-таки зачем-то нужны. Это подтверждается тем, что в них имеются консервативные участки, почти одинаковые у человека и мыши.

Изучение транскриптов, считанных с обычных белок-кодирующих генов, тоже преподнесло сюрпризы. Всего в пределах изученного участка генома находится 400 таких генов. Более чем у 80% из них анализ транскриптов выявил наличие неизвестных ранее функциональных фрагментов — экзонов (экзонами, в отличие от интронов, называют те участки гена, которые кодируют белок). Некоторые из этих экзонов, как выяснилось, находятся в геномной ДНК на расстоянии тысяч пар нуклеотидов от всех остальных экзонов того же гена, иногда они даже оказываются внутри другого гена. То, что гены высших организмов состоят из кодирующих кусочков-экзонов, разделенных некодирующими вставками-интронами, было известно давно, но никто не знал, что экзоны многих человеческих генов находятся так далеко друг от друга и так причудливо разбросаны. Более того: были обнаружены транскрипты, содержащие экзоны двух разных генов.

Всё это заставляет признать, что мы до сих пор не очень хорошо представляем себе, что же такое ген и как он работает. Некоторые из участников проекта позволили себе даже высказаться в прессе в том смысле, что, мол, ген — понятие отчасти устаревшее, а на самом деле фундаментальными единицами генома являются транскрипты (как сказал кто-то из теоретиков — «мы до сих пор живем в мире РНК»). Другие не согласны с этим: по их мнению, ген остается центральным объектом молекулярной биологии, только вот определение этого понятия нужно подкорректировать.

В ходе выполнения проекта исследователи разработали целый ряд новых методик, которые пригодятся им в дальнейшем — например, научились гораздо лучше искать регуляторные участки ДНК, в том числе сайты начала транскрипции (промоторы) — последовательности нуклеотидов, сигнализирующие РНК-полимеразам о том, что в этом месте следует начинать транскрипцию. До начала выполнения проекта ENCODE в этой части генома человека было известно 532 промотора, сейчас их уже 775, и вдобавок много предположительных, ожидающих экспериментального подтверждения.

Читайте также:  Александр македонский – биография, факты, фото

Назовем еще некоторые из полученных результатов:

Гистоны — специальные белки, на которые «наматывается» геномная ДНК в клеточном ядре — определенным образом модифицируются вблизи сайтов начала транскрипции и других регуляторных элементов; по характеру этих модификаций можно даже предсказывать наличие тех или иных регуляторных элементов в данном участке ДНК.

Примерно 5% нуклеотидов в геноме млекопитающих безусловно находятся под действием стабилизирующего (очищающего) отбора, иными словами, они консервативны — темп их эволюционных изменений сильно замедлен.

Для 60% этих консервативных оснований имеются экспериментальные подтверждения наличия функции — то есть они действительно зачем-то нужны, что-то кодируют.

Многие фрагменты ДНК с экспериментально подтвержденной функциональной ролью не являются, однако, эволюционно консервативными — последовательность нуклеотидов в них быстро менялась в ходе эволюции млекопитающих. По-видимому, многие из этих участков кодируют функции, не являющиеся жизненно важными. Такие участки могут служить хорошим «материалом для отбора». Кстати, сами исследователи именно этот результат считают наиболее неожиданным: раньше думали, что практически всё функциональное в геноме должно быть консервативным.

Функциональные фрагменты ДНК имеют разную степень вариабельности в пределах человеческой популяции: одни из них почти одинаковы у всех людей, другие могут очень сильно различаться.

Стоимость первого этапа исследований составила $42 млн. На продолжение работы NHGRI намерен выделять $23 млн ежегодно. Предполагается, что через 4 года весь геном человека будет подвергнут столь же глубокому анализу, как и изученная на сегодняшний день сотая часть. Ускорение и удешевление процесса будет обеспечено за счет новых методик, разработанных участниками проекта.

Гены человека – что нужно знать про геном?

Чтобы оценить значения генетики для медицины, необходимо понимать природу наследственного материала, знать, как он упакован в геноме и как передается от клетки к клетке в ходе деления и от поколения к поколению в процессе воспроизводства. Геном человека состоит из больших количеств ДНК, которая определяет своей структурой генетическую информацию, необходимую для всех аспектов эмбриогенеза, развития, роста, метаболизма и воспроизведения — по существу, для всего, что позволяет человеку функционировать как организм. Каждая ядерная клетка в организме несет свою собственную копию генома, который содержит около 25 000 генов.

Гены, рассматриваемые здесь просто как единицы генетической информации, закодированные в ДНК генома, организованы в ядре каждой клетки в виде линейных органелл, называемых хромосомами. Влияние генов и генетики на состояние здоровья весьма велико, и причины этого лежат в информации, закодированной в ДНК, формирующей геном человека. Наши знания природы и состава генов и человеческого генома экспоненциально возрастали в течение нескольких последних десятилетий, достигнув высшей точки в ходе расшифровки последовательности ДНК фактически всего генома человека в 2003 г.

Каждый биологический вид имеет характерный хромосомный состав (кариотип) с точки зрения количества и морфологии хромосом, которые создают геном. Гены расположены вдоль хромосом в линейном порядке, каждый ген имеет точную позицию или локус. Карта генов отображает позиции генов в хромосомах и характерна для каждого вида и индивидуума в пределах вида.

Исследованием хромосом, их структуры и особенностей наследования занимается цитогенетика. Начало современной цитогенетики человека, как науки, датируют 1956 г., когда было установлено, что нормальное число хромосом у человека — 46. С того времени стало известно очень многое о хромосомах человека — их структура в норме, молекулярный состав, локусы генов, которые они содержат, многочисленные и разнообразные аномалии.

Анализ хромосом и генома стал важной диагностической процедурой в клинической медицине. Здесь указаны некоторые из приложений цитогенетики, более подробно разбираемые в последующих статьях на сайте.

Клиническая диагностика. Многочисленные заболевания, включая некоторые частые, например синдром Дауна, связаны с микроскопически видимыми изменениями в количестве или структуре хромосом, что обусловливает необходимость хромосомного или геномного анализа для диагностики и генетического консультирования.
Картирование и идентификация генов. Главная цель медицинской генетики сегодня — картирование генов на хромосомах и объяснение их роли в развитии болезней.
Цитогенетика рака. Геномные и хромосомные изменения в соматических клетках связаны с возникновением и развитием многих типов рака.
Пренатальная диагностика. Хромосомный и геномный анализ — важная процедура в пренатальной диагностике.

Умение интерпретировать цитогенетическое заключение и некоторое знание методологии, возможностей и ограничений хромосомных исследований — ценный профессиональный навык врачей и других специалистов, связанных с уходом за пациентами с врожденными дефектами, умственной задержкой, нарушениями полового развития и многими типами рака.

За исключением гамет (половых клеток), все клетки, формирующие организм, называются соматическими (soma — тело). Геном, содержащийся в ядрах соматических клеток человека, состоит из 46 хромосом, объединенных в 23 пары. Из этих 23 пар 22 пары идентичны у мужчин и женщин и называются аутосомами, которые пронумерованы по размеру, начиная от наибольших и заканчивая наименьшими.

Оставшаяся пара включает половые хромосомы: две хромосомы X у женщин и X и Y у мужчин. Каждая хромосома содержит различный набор генов, которые размещаются линейно вдоль ДНК. Каждые пары хромосом, которые называют гомологичными хромосомами или гомологами, несут сопоставимую генетическую информацию, т.е. в них содержатся одни и те же гены в одной и той же последовательности.

Тем не менее в любом специфическом локусе могут быть как идентичные, так и отличающиеся формы одного гена, называемые аллелями. Одна из хромосом каждой пары наследуется от отца, другая от матери. В норме гомологичные пары аутосом микроскопически не отличимы друг от друга. У женщин половые хромосомы (две Х-хромосомы), подобно остальным, также не отличаются одна от другой. У мужчин же половые хромосомы отличаются. Одна — Х-хромосома — наследуется от матери и передается дочерям; вторая хромосома — Y наследуется от отца и передается его сыновьям. В статьях на нашем сайте мы рассмотрим некоторые исключения из этого простого и почти универсального правила, по которому женщины имеют 2 X хромосомы, а мужчины — X и Y.

Дополнительно к ядерному геному небольшая, но важная часть генома человека находится в митохондриях в цитоплазме. Митохондриальные хромосомы, описанные в этой главе ниже, имеют множество необычных характеристик, которые отличают их от остальной части генома человека.

Ген, геном, хромосома: определение, структура, функции

«Ген», «геном», «хромосома» – слова, которые знакомы каждому школьнику. Но представление об этом вопросе довольно обобщенное, так как для углубления в биохимические дебри требуются специальные знания и желание все это понимать. А оно, если и присутствует на уровне любопытства, то быстро пропадает под тяжестью изложения материала. Попробуем разобраться в хитросплетениях наследственной информации в научно-полярной форме.

Что такое ген?

«На плечах» генов лежит огромная ответственность за то, как будет выглядеть и работать каждая клетка и организм в целом. Они управляют нашей жизнью от момента зачатия до самого последнего вздоха.

Мендель показал, что наследст­венные задатки не смешиваются, а передаются от родителей потомкам в виде дискретных (обособлен­ных) единиц. Эти единицы, представленные у особей парами (аллелями), остаются дискретными и передаются по­следующим поколениям в мужских и женских га­метах, каждая из которых содержит по одной едини­це из каждой пары. В 1909 году датский ботаник Иогансен назвал эти единицы генами. В 1912 году генетик из Соединенных Штатов Америки Морган показал, что они находятся в хромосомах.

С тех пор прошло больше полутора веков, и исследования продвинулись дальше, чем Мендель мог себе представить. На данный момент ученые остановились на мнении, что информация, находящаяся в генах, определяет рост, развитие и функции живых организмов. А может быть, даже и их смерть.

Классификация

Структура гена содержит в себе не только информацию о белке, но и указания, когда и как ее считывать, а также пустые участки, необходимые для разделения информации о разных белках и остановки синтеза информационной молекулы.

Существует две формы генов:

  1. Структурные – они содержат в себе информацию о строении белков или цепей РНК. Последовательность нуклеотидов соответствует расположению аминокислот.
  2. Функциональные гены отвечают за правильную структуру всех остальных участков ДНК, за синхронность и последовательность ее считывания.

На сегодняшний день ученые могут ответить на вопрос: сколько генов в хромосоме? Ответ вас удивит: около трех миллиардов пар. И это только в одной из двадцати трех. Геном называется наименьшая структурная единица, но она способна изменить жизнь человека.

Читайте также:  Дураку половину работы не показывают

Мутации

Сами по себе мутации могут быть патогенными, то есть проявляться в виде заболеваний, либо летальными, не позволяющими организму развиваться до жизнеспособного состояния. Но большинство изменений проходит незаметно для человека. Делеции и дупликации постоянно совершаются внутри ДНК, но не влияют на ход жизни каждого отдельного индивидуума.

Делеция – это потеря участка хромосомы, который содержит определенную информацию. Иногда такие изменения оказываются полезными для организма. Они помогают ему защититься от внешней агрессии, например вируса иммунодефицита человека и бактерии чумы.

Дупликация – это удвоение участка хромосомы, а значит, и совокупность генов, которые он содержит, также удваивается. Из-за повторения информации она хуже подвержена селекции, а значит, может быстрее накапливать мутации и изменять организм.

Свойства гена

У каждого человека имеется огромная молекула ДНК. Гены — это функциональные единицы в ее структуре. Но даже такие малые участки имеют свои уникальные свойства, позволяющие сохранять стабильность органической жизни:

  1. Дискретность – способность генов не смешиваться.
  2. Стабильность – сохранение структуры и свойств.
  3. Лабильность – возможность изменяться под действием обстоятельств, подстраиваться под враждебные условия.
  4. Множественный аллелизм – существование внутри ДНК генов, которые, кодируя один и тот же белок, имеют разную структуру.
  5. Аллельность – наличие двух форм одного гена.
  6. Специфичность – один признак = один ген, передающийся по наследству.
  7. Плейотропия – множественность эффектов одного гена.
  8. Экспрессивность – степень выраженности признака, который кодируется данным геном.
  9. Пенетрантность – частота встречаемости гена в генотипе.
  10. Амплификация – появление значительного количества копий гена в ДНК.

Геном

Основу генома составляет молекула дезоксирибонуклеиновой кислоты, хорошо известная как ДНК. Все геномы содержат по крайней мере два вида информации: кодированная информация о структуре молекул-посредников (так называемых РНК) и белка (эта информация содержится в генах), а также инструкции, которые определяют время и место проявления этой информации при развитии организма. Сами гены занимают небольшую часть генома, но при этом являются его основой. Информация, записанная в генах, — своего рода инструкция для изготовления белков, главных строительных кирпичиков нашего тела.

Однако для полной характеристики генома недостаточно заложенной в нем информации о структуре белков. Нужны еще данные об элементах генетического аппарата, которые принимают участие в работе генов, регулируют их проявление на разных этапах развития и в разных жизненных ситуациях.

Но даже и этого мало для полного определения генома. Ведь в нем присутствуют также элементы, способствующие его самовоспроизведению (репликации), компактной упаковке ДНК в ядре и еще какие-то непонятные пока еще участки, иногда называемые «эгоистичными» (то есть будто бы служащими только для самих себя). По всем этим причинам в настоящий момент, когда заходит речь о геноме, обычно имеют в виду всю совокупность последовательностей ДНК, представленных в хромосомах ядер клеток определенного вида организмов, включая, конечно, и гены.

Размер и структура генома

По соотношению между размерами генома и числом входящих в него генов можно выделить два класса:

  1. Компактные геномы, имеющие не более десяти миллионов оснований. У них совокупность генов строго коррелирует с размером. Наиболее характерны для вирусов и прокариотов.
  2. Обширные геномы состоят более чем из 100 миллионов пар оснований, не имеющих взаимосвязи между их длиной и количеством генов. Чаще встречаются у эукариотов. Большинство нуклеотидных последовательностей в этом классе не кодируют белков или РНК.

Исследования показали, что в геноме человека находится около 28 тысяч генов. Они неравномерно распределены по хромосомам, но значение этого признака остается пока загадкой для ученых.

Хромосомы

Изменения хромосом в процессе деления клетки

Ген, геном, хромосома – это последовательные звенья цепи передачи информации, где каждое следующее включает предыдущее. Но и они претерпевают определенные изменения в процессе жизни клетки. Так, например, в интерфазе (период между делениями) хромосомы в ядре расположены рыхло, занимают много места.

Когда клетка готовится к митозу (т. е. к процессу разделения надвое), хроматин уплотняется и скручивается в хромосомы, и теперь его становится видно в световой микроскоп. В метафазе хромосомы напоминают палочки, близко расположенные друг к другу и соединенные первичной перетяжкой, или центромерой. Именно она отвечает за формирование веретена деления, когда группы хромосом выстраиваются в линию. В зависимости от размещения центромеры существует такая классификация хромосом:

  1. Акроцентрические – в этом случае центромера расположена полярно по отношению к центру хромосомы.
  2. Субметацентрические, когда плечи (то есть участки, находящиеся до и после центромеры) неравной длины.
  3. Метацентрические, если центромера разделяет хромосому ровно посередине.

Данная классификация хромосом была предложена в 1912 году и используется биологами вплоть до сегодняшнего дня.

Аномалии хромосом

  1. Анеуплоидия. Это изменение общего числа хромосом в кариотипе за счет добавления или удаления одной из них. Последствия такой мутации могут быть летальными для еще не родившегося плода, а также приводить к врожденным дефектам.
  2. Полиплоидия. Проявляется в виде увеличения количества хромосом, кратного половине их числа. Чаще всего встречается у растений, например водорослей, и грибов.
  3. Хромосомные аберрации, или перестройки, — это изменения в строении хромосом под воздействием факторов внешней среды.

Генетика

Генетика — это наука, изучающая закономерности наследственности и изменчивости, а также обеспечивающие их биологические механизмы. В отличие от многих других биологических наук она с момента своего возникновения стремилась быть точной наукой. Вся история генетики — это история создания и использования все более и более точных методов и подходов. Идеи и методы генетики играют важную роль в медицине, сельском хозяйстве, генетической инженерии, микробиологической промышленности.

Наследственность — способность организма обеспечивать в ряду поколений преемственность морфологических, биохимических и физиологических признаков и особенностей. В процессе наследования воспроизводятся основные видоспецифические, групповые (этнические, популяционные) и семейные черты строения и функционирования организмов, их онтогенеза (индивидуального развития). Наследуются не только определенные структурно-функциональные характеристики организма (черты лица, некоторые особенности обменных процессов, темперамента и др.), но и физико-химические особенности строения и функционирования основных биополимеров клетки. Изменчивость — разнообразие признаков среди представителей определенного вида, а также свойство потомков приобретать отличия от родительских форм. Изменчивость вместе с наследственностью представляют собой два неразделимых свойства живых организмов.

Синдром Дауна

Название свое синдром получил в честь врача, Дона Дауна, который открыл и описал его в литературе как форму психического расстройства в 1866 году. Но генетическая подоплека была обнаружена почти на сто лет позже.

Эпидемиология

Формы синдрома Дауна

Наиболее частый вариант – появление дополнительной хромосомы в двадцать первой паре по ненаследственному пути. Он обусловлен тем, что во время мейоза эта пара не расходится по веретену деления. У пяти процентов заболевших наблюдается мозаицизм (дополнительная хромосома содержится не во всех клетках организма). Вместе они составляют девяносто пять процентов от общего количества человек с этой врожденной патологией. В остальных пяти процентах случаев синдром вызван наследственной трисомией двадцать первой хромосомы. Однако рождение двух детей с этим заболеванием в одной семье незначительно.

Клиника

Человека с синдромом Дауна можно узнать по характерным внешним признакам, вот некоторые из них:

— уплощенное лицо;
— укороченный череп (поперечный размер больше продольного);
— кожная складка на шее;
— складка кожи, которая прикрывает внутренний угол глаза;
— чрезмерная подвижность суставов;
— сниженный тонус мышц;
— уплощение затылка;
— короткие конечности и пальцы;
— развитие катаракты у детей старше восьми лет;
— аномалии развития зубов и твердого неба;
— врожденные пороки сердца;
— возможно наличие эпилептического синдрома;
— лейкозы.

Но однозначно поставить диагноз, основываясь только на внешних проявлениях, конечно, нельзя. Необходимо провести кариотипирование.

Заключение

Ген, геном, хромосома — кажется, что это просто слова, значение которых мы понимаем обобщенно и весьма отдаленно. Но на самом деле они сильно влияют на нашу жизнь и, изменяясь, заставляют меняться и нас. Человек умеет подстраиваться под обстоятельства, какими бы они ни оказались, и даже для людей с генетическими аномалиями всегда найдется время и место, где они будут незаменимы.

Ссылка на основную публикацию